Phasic Firing in Vasopressin Cells: Understanding Its Functional Significance through Computational Models
نویسندگان
چکیده
Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP) generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response. These findings show large differences in information coding between the populations, and apparent functional advantages of asynchronous phasic firing.
منابع مشابه
kappa-opioid regulation of neuronal activity in the rat supraoptic nucleus in vivo.
We investigated the influence of endogenous kappa-opioids on the activity of supraoptic neurons in vivo. Administration of the kappa-antagonist nor-binaltorphimine (200 micrograms/kg, i.v.), increased the activity of phasic (vasopressin), but not continuously active (oxytocin), supraoptic neurons by increasing burst duration (by 69 +/- 24%) and decreasing the interburst interval (by 19 +/- 11%)...
متن کاملA Population Model of Vasopressin Secretion
Computer modelling is a powerful tool for clarifying and testing theory. In neuroscience, this often means replicating firing patterns. Models need evaluation functions to quantify the significance of features in the firing patterns, but usually the effect of firing is insufficiently understood. The magnocellular vasopressin neurons of the hypothalamus do have an output that is both well unders...
متن کاملDehydration-induced modulation of kappa-opioid inhibition of vasopressin neurone activity.
Dehydration increases vasopressin (antidiuretic hormone) secretion from the posterior pituitary gland to reduce water loss in the urine. Vasopressin secretion is determined by action potential firing in vasopressin neurones, which can exhibit continuous, phasic (alternating periods of activity and silence), or irregular activity. Autocrine kappa-opioid inhibition contributes to the generation o...
متن کاملVasopressin regularizes the phasic firing pattern of rat hypothalamic magnocellular vasopressin neurons.
Vasopressin (AVP) magnocellular neurons of hypothalamic nuclei express specific phasic firing (successive periods of activity and silence), which conditions the mode of neurohypophyseal vasopression release. In situations favoring plasmatic secretion of AVP, the hormone is also released at the somatodendritic level, at which it is believed to modulate the activity of AVP neurons. We investigate...
متن کاملSpike Triggered Hormone Secretion in Vasopressin Cells; a Model Investigation of Mechanism and Heterogeneous Population Function
Vasopressin neurons generate distinctive phasic patterned spike activity in response to elevated extracellular osmotic pressure. These spikes are generated in the cell body and are conducted down the axon to the axonal terminals where they trigger Ca²⁺ entry and subsequent exocytosis of hormone-containing vesicles and secretion of vasopressin. This mechanism is highly non-linear, subject to bot...
متن کامل